skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruppert, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cloud‐radiative forcing (CRF) has been suggested to accelerate tropical cyclone (TC) genesis, but we do not yet understand the role of convective‐scale processes in this cloud‐radiative feedback. We use a convection‐permitting ensemble Weather Research and Forecasting model framework to examine the hypothesis that CRF within stratiform cloud regions weakens downdrafts, allowing the environment to moisten more easily. We specifically compare our control simulations (CTL) of TC development to sensitivity tests that exclude cloud‐radiative forcing (NCRF) either everywhere or just within specific cloud types. Our experiment and analysis indicate that CRF leads to fewer and weaker stratiform downdrafts and greater humidity and moist entropy in the developing TC core, implying suppressed ventilation, with stratiform and anvil CRF dominating this effect. This cloud‐radiative feedback accelerates TC development by promoting faster intensification of both the mid‐level vortex and surface cyclone. 
    more » « less
  2. Abstract Studies have implicated the importance of longwave (LW) cloud‐radiative forcing (CRF) in facilitating or accelerating the upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual roles in driving upscale development through radiative feedback is largely unexplored. Here we examine the hypothesis that CRF from stratiform regions has the greatest positive effect on upscale development of tropical convection. We do so through numerical model experiments using convection‐permitting ensemble WRF (Weather Research and Forecasting) simulations of tropical cyclone formation. Using a new column‐by‐column cloud classification scheme, we identify the contributions of five cloud types (shallow, congestus, and deep convective; and stratiform and anvil clouds). We examine their relative impacts on longwave radiation moist static energy (MSE) variance feedback and test the removal of this forcing in additional mechanism‐denial simulations. Our results indicate the importance stratiform and anvil regions in accelerating convective upscale development. 
    more » « less
  3. Abstract Over the course of his career, Fuqing Zhang drew vital new insights into the dynamics of meteorologically significant mesoscale gravity waves (MGWs), including their generation by unbalanced jet streaks, their interaction with fronts and organized precipitation, and their importance in midlatitude weather and predictability. Zhang was the first to deeply examine “spontaneous balance adjustment”—the process by which MGWs are continuously emitted as baroclinic growth drives the upper-level flow out of balance. Through his pioneering numerical model investigation of the large-amplitude MGW event of 4 January 1994, he additionally demonstrated the critical role of MGW–moist convection interaction in wave amplification. Zhang’s curiosity-turned-passion in atmospheric science covered a vast range of topics and led to the birth of new branches of research in mesoscale meteorology and numerical weather prediction. Yet, it was his earliest studies into midlatitude MGWs and their significant impacts on hazardous weather that first inspired him. Such MGWs serve as the focus of this review, wherein we seek to pay tribute to his groundbreaking contributions, review our current understanding, and highlight critical open science issues. Chief among such issues is the nature of MGW amplification through feedback with moist convection, which continues to elude a complete understanding. The pressing nature of this subject is underscored by the continued failure of operational numerical forecast models to adequately predict most large-amplitude MGW events. Further research into such issues therefore presents a valuable opportunity to improve the understanding and forecasting of this high-impact weather phenomenon, and in turn, to preserve the spirit of Zhang’s dedication to this subject. 
    more » « less
  4. Long-lived, zonally propagating diurnal rainfall disturbances are a highly pronounced and common feature in the Maritime Continent (MC). A recent study argues that these disturbances can be explained as diurnally phase-locked gravity waves. Here we explore the origins of these waves through regional cloud-permitting numerical model experiments. The gravity waves are reproduced and isolated in the model framework through the combined use of realistic geography and diurnally cyclic lateral boundary conditions representative of both characteristic easterly and westerly background zonal flow regimes. These flow regimes are characteristic of the Madden–Julian oscillation (MJO) suppressed and active phase in the MC, respectively. Tests are conducted wherein Borneo, Sumatra, or both islands and/or their orography are removed. These tests imply that the diurnal gravity waves are excited and maintained directly by latent heating from the vigorous mesoscale convective systems (MCSs) that form nocturnally in both Borneo and Sumatra. Removing orography has only a secondary impact on both the MCSs and the gravity waves, implying that it is not critical to these waves. We therefore hypothesize that diurnal gravity waves are fundamentally driven by mesoscale organized deep convection, and are only sensitive to orography to the measure that the convection is affected by the orography and its mesoscale flows. Factor separation further reveals that the nonlinear interaction of synchronized diurnal cycles in Sumatra and Borneo slightly amplifies this gravity wave mode compared to if either island existed in isolation. This nonlinear feedback appears most prominently at longitudes directly between the two islands. 
    more » « less
  5. An unfiltered zonal Hovmöller depiction of rainfall in the Maritime Continent (MC) reveals remarkable spatiotemporal continuity of zonally propagating disturbances with a diurnal period, which endure over multiple days and propagate faster than the individual convective storms they coupled with. This phenomenon and its sensitivity to the Madden–Julian oscillation (MJO) during the 2011/12 Dynamics of the MJO (DYNAMO) field campaign is examined here through a well-validated, convection-permitting model simulation conducted on a large domain. We find that these disturbances are zonally propagating diurnal gravity waves excited by vigorous nocturnal mesoscale convective systems over Sumatra and Borneo. These gravity waves are diurnally phase locked: their wavelength very closely matches the distance between these two islands (~1500 km), while their particular zonal phase speed (~±17 m s −1 ) allows them to propagate this distance in one diurnal cycle. We therefore hypothesize that these waves are amplified by resonant interaction due to diurnal phase locking. While these zonal gravity waves decouple from convection once beyond the MC, their divergent flow signature endures well across the Indian Ocean, provoking the notion that they may influence rainfall at far remote locations. The exact controls over this zonal phase speed remain uncertain; we note, however, that it is roughly consistent with diurnal offshore-propagating modes documented previously. Further study is required to tie this down, and more generally, to understand the sensitivity of these modes to background flow strength and the geography of the MC. 
    more » « less